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ABSTRACT

Computer-Generated Holography (CGH) is a set of algorithmic

methods for identifying holograms that reconstruct Three-Dimen-

sional scenes in holographic displays. CGH algorithms decompose

3D scenes into multiplanes at di�erent depth levels and rely on sim-

ulations of light that propagated from a source plane to a targeted

plane. Thus, for = planes, CGH typically optimizes holograms using

= plane-to-plane light transport simulations, leading to major time

and computational demands. Our work replaces multiple planes

with a focal surface and introduces a learned light transport model

that could propagate a light �eld from a source plane to the focal

surface in a single inference. Our model leverages spatially adaptive

convolution to achieve depth-varying propagation demanded by

targeted focal surfaces. The proposed model reduces the hologram

optimization process up to 1.5x, which contributes to hologram

dataset generation and the training of future learned CGH models.

CCS CONCEPTS

• Hardware→ Emerging optical and photonic technologies;

• Human-centered computing → Displays and imagers; •

Computing methodologies→ Computer graphics.
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1 INTRODUCTION

Computer-Generated Holography (CGH) is a family of algorith-

mic methods used to generate holographic interference patterns.

Identifying these interference patterns using learned [Shi et al.

2022] and optimization [Kavaklı et al. 2023a] CGH methods require

conventional simulations of light propagation from plane-to-plane
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Figure 1: Conventional
Light Transport VS. Proposed
Focal Surface Light Trans-
port.(Source image: Tobi 87,
Link: Wikimedia Commons)

[Matsushima and Shimobaba 2009;

Shen and Wang 2006]. Recently,

learned proxy methods [Choi et al.

2021; Kavaklı et al. 2022] have been

proposed to replace conventional light

propagation methods [Matsushima

and Shimobaba 2009; Shen and Wang

2006]. As these learned proxy meth-

ods for light propagation are trained

using camera-in-the-loop strategies,

they are able to capture imperfections

of optical hardware, closing the gap

between theoretical simulations and

actual hardware. Either learned or con-

ventional, simulating light propaga-

tion amongmultiple planes in a 3D vol-

ume is computationally demanding, as

a 3D volume is represented with mul-

tiple planes and each plane requires a

separate calculation of light propaga-

tion to reconstruct the target image.

Our work introduces a learned fo-

cal surface light propagation model

that could help free light simulations

from plane dependence. Speci�cally,

our model can propagate a phase-only hologram represented with

a plane to a targeted focal surface, see Fig. 1. In our model, we

extract Spatially Varying (SV) depth features of a focal surface

by learning a set of SV kernels. In addition, our model combines

these SV learned kernels with Spatially Invariant (SI) kernels using

a Spatially Adaptive Convolution (SAC). Thus, e�ectively captur-

ing SV and SI features of light propagation over a focal surface. Our

work makes the following contributions:

• Learned focal surface light transport model. By uniquely

leveraging SAC for CGH, we introduce a new learned light trans-

port model. Our model identi�es a mapping from a phase-only

hologram represented over a plane to a targeted focal surface.

• Focal surface-based hologram optimization. To evaluate its

practicality, we utilize our model for a 3D phase-only hologram

optimization application. Comparedwith conventional light prop-

agation based hologram optimization methods [Kavaklı et al.

2023a,b], our approach accelerates the optimization process up to

1.5x, leading to speed up bene�ts in hologram dataset generation

and training future learned CGH models.

• Experimental Validation. We evaluate our method in simu-

lation for various propagation distances and validate the result

using a bench-top on-axis holographic display prototype.
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Figure 2: Our proposed learned focal surface light transport model. The process starts with an input hologram H and a focal

surface D to generate spatially varying kernels [Vi], where 8 = 0, 1, 2, 3 indicates the index of scales. Those kernels are utilized in

the Spatially Adaptive Module (SAM) to achieve focal surface light transport. In the SAM, V0
3,V

9
3,V

;
3,V

I
3 represent kernels used

at di�erent spatial locations, where 0, 9 , ; , and I indicate speci�c positions. (Source image: Tobi 87, Link: Wikimedia Commons)

2 FOCAL SURFACE LIGHT TRANSPORT

We introduce the SAC, a modi�ed convolution structure for encod-

ing SV features. Leveraging the SAC, our work enables the learned

focal surface light transport network.

2.1 Spatially Adaptive Convolution

Standard Convolution. Given an input feature Ĩ ∈ R2̃×ℎ̃×F̃ in a Con-

volutional Neural Network (CNN), where 2̃ , ℎ̃, and F̃ represent the

number of channels, height, and width of the input Ĩ (in our case,

2̃ = 3, F̃ = 1080, ℎ̃ = 1920), the discrete convolution based on a SI

kernel W ∈ R2̂×2̃×:×: is de�ned as:

I[2, G, ~ ]
︸    ︷︷    ︸
output

=

∑

2′,G ′,~′

W[2, 2′, G ′, ~′ ]
︸             ︷︷             ︸

SI Kernel

Ĩ[2′, G + G ′, ~ + ~′ ]
︸                   ︷︷                   ︸

input

, (1)

where 2̃ and 2̂ indicate the number of input and output channels. The

indices satisfy 1 ≤ 2′ ≤ 2̃ and 1 ≤ 2 ≤ 2̂ . The pair (G ′, ~′) belongs

to the set Ω(:), which speci�es a : × : convolutional window. The

summation operation acts on all input channels, which implies that

each input channel contributes to every output channel. According

to Eq. (1), this operation is characterized by a kernel that is spatially

shared and content-independent. Learning-based light transport

models could use Eq. (1) as a basic operation. However, it is chal-

lenging for this method to project a hologram onto a focal surface.

As each pixel on the hologram plane may correspond to a di�erent

depth on the focal surface, which makes the SI kernel a sub-optimal

choice to capture SV features [Xu et al. 2020; Zheng et al. 2021],

including focusing or out-of-focus e�ects due to depth variance.

A typical solution is to employ a large number of parameters for

feature encoding, resulting in an increased memory footprint. Al-

ternatively, we could consider using SV convolution [Xu et al. 2020;

Zheng et al. 2021]. The SV kernel V ∈ R2̂×ℎ×F×2̃×:×: incorporates

two new dimensions ℎ,F into SI kernel, where ℎ and F indicate

height, and width of the output feature. However, relying solely

on SV kernels may increase model capacity due to extra parameters,

particularly when ℎ andF are large. These alternative designs all

demand extra network capacity.

Spatially Adaptive Convolution Operation. To address these prob-
lems, we utilize the SAC based on [Xu et al. 2020]. Our method
reduces the network parameters by multiplying the SV kernel with

the standard SI kernel. Initially, the SV kernel V ∈ R1×ℎ×F×2̃×:×:

is introduced, the output channel is set to 1 to reduce the number of

parameters. The Spatially Adaptive (SA) kernelA ∈ R2̂×ℎ×F×2̃×:×:

is computed by multiplying theW and V, which de�ned as:

A[2, G, ~, 2′, G ′, ~′ ] = V[1, G, ~, 2′, G ′, ~′ ] ∗W[2, 2′, G ′, ~′ ], (2)

where 1 ≤ 2 ≤ 2̂ , 1 ≤ 2′ ≤ 2̃ ,1 ≤ G ≤ ℎ and 1 ≤ ~ ≤ F . Eq. 2 en-
hances the output channel capacity in Vwhile maintaining spatially
variant. Both V andW can be either pre-de�ned or learned, making
the network content-adaptive. By using A, the SAC is de�ned as:

I[2, G, ~ ] =
∑

2′,G ′,~′

A[2, G, ~, 2′, G ′, ~′ ]
︸                   ︷︷                   ︸

SA Kernel

Ĩ[2′, G + G ′, ~ + ~′ ] . (3)

SAC retains both the dimensional coherence of the SI kernel in CNN

and is spatially variant at the same time. Note that whenW becomes

an all-one tensor, Eq. 3 is equivalent to the SV convolution in CNN.

2.2 Learned Focal Surface Light Transport

We �rst generate SV kernels to encode depth-varying features of

the focal surface, which are later used in SAC for focal surface light

transport. For the schematic �gure of our system, please see Fig. 2.

Spatially Varying Kernel Generation. As shown in Fig. 2, the SV

kernel generation module takes the hologram H ∈ R1×3×ℎ×F and

focal surfaceD ∈ R1×1×ℎ×F as inputs. We adopted the architecture

in RSGUNet [Huang et al. 2018] for SV kernel generation module.

The output of each decoder layer is integrated with feature maps

from di�erent layers in the encoders. Then combined features will

be fed into Spatially Varying Feature (SVF) module to learn a set

of SV kernels [V8 ], where V8 ∈ R
=×2̃8×:×: , 8 = 0, 1, 2, 3 refers to

di�erent scale levels, 2̃8 denotes the input channel, : is the kernel

size, and = =
ℎ
28
× F

28
is the number of kernels. The SVF module

contains convolution layers and average pooling layers. To mitigate

artifacts, we modify the global feature module in [Huang et al. 2018]

to an attention block and apply it at the bottleneck of the U-Net.

https://commons.wikimedia.org/wiki/File:Calanque_d'En_Vau-Cassis.jpg
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Figure 3: Visual comparison of simulating light transported onto a focal surface (speci�ed in the �rst row of each case) at 0 mm

and 10 mm propagation distances. The ground truth is obtained via ASM [Matsushima and Shimobaba 2009]. Both focused and

defocused regions indicate poor performance of the U-Net model. (Source image: Matt H. Wade, Link: Wikimedia Commons)

Focal Surface Light Transport. We leverage the generated SV kernels

to build our light transport module based on RSGUNet [Huang et al.

2018]. The module takes the hologramH as input without requiring

depth, as the depth feature of the focal surface is inherently encoded

within the learned SV kernels. To integrate the SV features into

the encoder, we propose a Spatially Adaptive Module (SAM) based

on SAC. As shown in Fig 2, we �rst replace the SI kernelW to an

all-ones tensor in Eq. (2), which ignores the SI kernels and only

considers the SV kernels to capture the original SV information.

In parallel, we introduce the SI kernels back to Eq. (2) as a learn-

ing parameter and multiply with the SV kernels for better diverse

feature extraction. These features from the two operations will be

concatenated to form the output of SAM. Finally, the global feature

module and the decoder will process the output to generate the

reconstruction at the given focal surface denoted as R.

Loss function. We employ the !2 norm to quantify the discrepancy
between the reconstruction R and the target image R′. Both R
and R′ are focal surface depended image reconstructions. Since R
contains both focus and defocus regions [Kavaklı et al. 2023a], we
utilize a binary mask M that highlights only the focus parts of the
image. The loss function for the reconstruction on a single focal
surface L� is de�ned as:

L� = U0M∥R − R′ ∥22 + U1 (1 − M) ∥R − R′ ∥22, (4)

where U0 and U1 represent weights (U0 = 1 and U1 = 0.5).

2.3 Optimizing Holograms with Focal Surfaces
Recently, learning-based methods have been proposed to solve 3D
hologram generation tasks [Choi et al. 2021; Shi et al. 2022]. How-
ever, the ideal 3D hologram for the holographic display has not yet
been precisely de�ned [Kim et al. 2024]. Optimization-based holo-
gram generation methods [Kavaklı et al. 2023a,b] could potentially
help identify the ideal 3D hologram and generate hologram datasets
for learning-based approaches. Typically, optimization methods are
based on the multiplane representation, where a full-color holo-
gram is synthesized bymaking use of the phase patterns of the three
color primaries. Following previous work [Kavaklı et al. 2023b],
each single-color phase pattern is obtained by:

Ĥ? ← argmin
Hp

3∑

?=1

L
(��48H? ⊗ K?

��2 , BR?
)
, (1)

where ? denotes the index of a color primary, H? is the SLM phase,

Ĥ? is the optimized SLM phase, K? is the wavelength-dependent
light transport kernel [Matsushima and Shimobaba 2009], R? is the
target image intensity, B is an intensity scaling factor ( B = 1 by

default), ⊗ denotes convolution. We substitute the conventional
light transport model with our focal-surface-based model:

Ĥ← argmin
H
L (� (H,D), BR) . (5)

In this case, the hologram optimization problem is simpli�ed. Our

approach simultaneously optimizes hologram in three color pri-

maries and maintains phase-only at the same time.

3 EVALUATION AND DISCUSSION

We generate the focal surface light transport dataset based on

previous work [Kavaklı et al. 2023a,b] at the resolution 1920 ×

1080. See Section 1 of the supplementary material for more de-

tails. We use Adam optimizer (V1 = 0.9, V2 = 0.999, U3420~ =

0.5 05 C4A 50 4?>2ℎB). The model is trained for 500 epochs, with

an initial Learning Rate (LR) of 2 × 10−4. All experiments are con-

ducted on a single NVIDIA V100 16G GPU.

Evaluation. To assess the image quality, we utilize metrics including

Peak Signal-to-noise Ratio (PSNR), Structural Similarity (SSIM), and

Perceptual Similarity Metric (LPIPS) [Zhang et al. 2018]. First, we

assess the quality of light simulation on a focal surface. As shown

in Tbl. 1, our model outperforms U-Net [Ronneberger et al. 2015]

across all metrics. Fig. 3 shows that our model preserves more

high-frequency content than U-Net, providing �ner details and

sharper edges, closer to the ground truth. Second, we utilize our

Table 1: Evaluation of various light transport models on our

dataset. The speed is tested by simulating an all-in-focus,

full-color 3D image with six depth planes. Note that higher

PSNR/SSIM and lower Params/Speed indicate better perfor-

mance, denoted by ↑ and ↓ in the tables.

Methods
PSNR (dB) ↑ SSIM ↑

Stage
Params ↓ Speed ↓

0 mm/10 mm 0 mm/10 mm (M) (s)

ASM (GT) [Matsushima
and Shimobaba 2009]

- - Two - 0.4559

U-Net [Ronneberger
et al. 2015]

29.662/30.112 0.8015/0.7760 Single 7.7760 0.0565

Ours 36.016/34.279 0.9128/0.8470 Single 7.4446 0.0471

model for a 3D phase-only hologram optimization application under

0<< propagation distance. Optimizing holograms with six target

planes using Angular Spectrum Method (ASM) [Matsushima and

Shimobaba 2009] is denoted as ASM 6, while Ours 4 and Ours 6

represent optimizing holograms using our model with four and

six focal surfaces, respectively. All holograms are reconstructed

https://commons.wikimedia.org/wiki/File:Cinderella_Castle_2013_Wade.jpg
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Ours 6  ASM 6 

Rear focus Front focus Rear focus Front focus

Out of focus Out of focus In focus In focus In focus Out of focus Out of focus Out of focus In focus In focus In focus Out of focus

Figure 4: Visual comparison on simulated holograms optimized using ASM 6 and Ours 6 under 0 mm propagation distance. All

holograms are reconstructed using ASM for evaluation. (Source image : Jaimie Phillips, Link: Wikimedia Commons)

Table 2: Comparison of image quality for the scene in Fig. 4

among ASM 6, Ours 6, and Ours 4 across di�erent iterations

at 0 mm propagation distance. Note that higher PSNR/SSIM

↑ and lower LPIPS/Speed ↓ indicate better performance.

ASM 6/Ours 6
/ Ours 4

Iteration

50 100 200

Speed (s) ↓ 42.580/30.182/20.869 84.626/61.460/39.792 171.49/119.02/77.878

PSNR (dB) ↑ 27.377/27.501/26.088 27.795/27.598/26.905 27.801/27.625/26.928

SSIM ↑ 0.7100/0.6868/0.6142 0.7193/0.6933/0.6753 0.7195/0.6890/0.6767

LPIPS ↓ 0.3971/0.4747/0.5431 0.3894/0.4687/0.4707 0.3889/0.4787/0.4689

using ASM for performance assessment. As shown in Fig. 4 and

Tbl. 2, Ours 6 achieves comparable results with about 70% of the

optimization time compared to ASM 6. Actual captures of Ours 6

and ASM 6 in Fig. 5 demonstrate the capability of our model for

generating 3D holograms. For more details on the display prototype

and comparisons, see Sections 2 and 3 in supplementary material.

Ours 6 ASM 6

Figure 5: Comparing experimental captures of ASM 6

and Ours 6 under 0 mm propagation distances. (Source image

: Jaimie Phillips, Link: Wikimedia Commons)

Computational Complexity Analysis. First, we assess the computa-

tional complexity of simulating a full-color, all-in-focus 3D image

across six depth planes. As shown in Tbl. 1, conventional ASM-

based model [Matsushima and Shimobaba 2009] requires eighteen

forward passes to simulate a full-color, all-in-focus 3D image with

six depth planes. In contrast, our model simulates the three color-

primary images simultaneously onto a focal surface with a single

forward pass, reducing simulation time by 10x and achieving better

image quality with fewer parameters compared to U-Net [Ron-

neberger et al. 2015]. Second, we evaluate hologram optimization.

In Tbl. 2, using four focal surfaces (Ours 4) to approximate six

planes for focus and defocus guidance, speeding up optimization

by up to 2x. Increasing the number of focal surfaces to six (Ours 6)

achieves comparable results with about a 1.5x speedup.

Limitations and Future Works. As shown in Fig. 3, the performance

of our model degrades at a long propagation distance (10 <<)

compared to zero distance (0<<). See Section 3 in the supplemen-

tary material for more comparisons. Future improvements could

include using a factorized larger kernel for long-distance propaga-

tion. In addition, our model focuses on depth-varying propagation

within a 3D volume, more investigation is needed for depth-varying

propagation of the entire volume using conditional networks.
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