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ABSTRACT

Computer-Generated Holography (CGH) reconstructs Three-Dimensional (3D) scene by encoding information
into holograms. Traditional CGH algorithms decompose the 3D scenes into multiple planes at different depth
levels and simulate light propagation between these planes. However, conventional light propagation methods
used in CGH are limited to plane-to-plane simulations, which may increase computational demands when a 3D
scene is represented with numerous successive planes. We introduce a novel learned model that simulates light
propagation from a single hologram plane to multiple planes in a single forward pass. In this way, our method
can help reduce the computational complexity of optimizing 3D holograms in CGH algorithms.
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1. INTRODUCTION

CGH algorithms often represent 3D scenes as a series of planes at different depth levels.1,2 Conventional light
simulation methods, such as the Angular Spectrum Method (ASM),3 are typically used for light propagation
between these planes in both learning-based4,5 and optimization-based2 CGH methods. Recently, learning-based
light propagation models have been introduced to bridge the gap between physical accuracy and computational
simulation. These models may incorporate camera-in-the-loop strategies4 or learn a large kernel in the frequency
domain.6 However, those light propagation techniques in CGH remain limited to plane-to-plane simulations.
When a 3D scene is represented by multiple planes, this method requires separate computations for each plane,
resulting in increased computational costs. In this work, we propose a learned plane-to-multiplane light prop-
agation model that enables light propagation from a plane to multiple target planes in a single forward pass.
Our approach utilizes a U-Net architecture,7 enhanced with a global feature module8 to mitigate artifacts and
capture global information. This method significantly reduces the computational complexity of optimizing 3D
holograms in CGH algorithms, offering a more efficient solution for light propagation in 3D scenes.

2. LEARNING PLANE-TO-MULTIPLANE LIGHT PROPAGATION MODEL

We adopt a U-Net architecture7 as the foundation for our light propagation model. The input to the network
consists of a hologram combined with a series of distance values. These distance values are transformed into
distance maps, where each map has the same dimensions as the hologram, with all pixels sharing the same
distance value. The hologram and the distance maps are concatenated, forming the input to the network. The
model generates a series of images at different depth planes as its output.

The model processes the input through an initial convolutional layer, which extracts features from both the
hologram and distance maps. The U-Net structure comprises three encoder layers and three decoder layers
with skip connections that link corresponding encoder and decoder layers. Each encoder layer consists of three
convolutional layers that progressively extract features at different scales, while each decoder layer contains a
transposed convolution followed by two standard convolutions. The encoder and decoder are connected by the
global feature module inspired by RSGUNet.8 It collects global context and mitigates potential local artifacts
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Figure 1. Left: Plane-to-multiplane light propagation model presented in this paper; Right: Our enhanced focal surface
holographic light transport model.9

during decoding. The module applies two convolutional layers followed by an average pooling layer, and com-
pressing the spatial information into a global feature vector. These global features are then processed through
linear layers to mitigate artifacts. This model was developed with the support of Odak.10

More recently, we have proposed a more advanced light propagation model known as the focal surface holo-
graphic light transport9 for hologram optimization. Instead of simulating plane-to-plane light propagation, we
replace the target planes with a focal surface and propagate light from a plane to the target surface in a single
inference, which is achieved by spatially varying convolution.11,12 This approach simplifies hologram verifica-
tion and calculation for holographic displays. This new approach improves the simulation speed by 10x and
accelerates the hologram optimization process by 1.5x.
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