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(2) Train specialized INRs (MLP/SIREN/FilmSIREN) per patch 

with weight inheritance to ensure consistency and input the 

holograms into the VAE (TAESD) to obtain its decoded version for 

comparison; 

2

3

Result 5

Comparison
ree INRs (MLP/SIREN/

FilmSIREN) methond can effectively 

compress hologram at compression 

ratio of 40%, and significantly 

outperform TAESD which fails to 

compress.

Limitations 
Degrades ~5 dB at larger patches 

(160×160). e 40 min/hologram 

training is slower than conventional 

encoders.

SIREN achieves peak performance at 

3×64×64 patch size: PSNR is 42.29 dB 

with compression ratio of 40%.

Variational AutoEncoder               
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(1) Split phase-only holograms (3×512×512) into high-frequency-

focused patches (e.g., 3×64×64); 

Vanilla MLP

    Foundational INR to image compression.

SIREN
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Unlike natural images, holograms 

contain high-frequency content, 

which presents unique challenges for 

compression and reconstruction,  

leading to degraded image quality.

 

Pretrained VAEs compresses images successfully Implicit Neural Representations (INRs)

Promises high quality hologram compressionFail to compress holograms.

Problem

Whether learned models can effectively 

compress phase-only holograms and 

contribute to improved storage and 

transmission efficiency.

Effective tool to represent complex natural 

signals and their derivatives.

FilmSIREN

Conditioned SIREN to accelerate training   

and mitigate computational complexity.

TAESD

A tiny distilled version of Stable Diffusion's 

VAE , turns full-size images into latent and 

the decoder then generates new full-size 

images.

Aims
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(3) Reconstruct full hologram, INR achieved 40% compression  

Visualized in below where VAE fail. S
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Future work 

Explore state-of-the-art models and adaptive patch 

sizing to balance throughput and quality.
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