1 Expanded Stego Visual Examples

The following are more visual examples with other pictures and other models, such as baseline, all at 256 X 256 resolution. We observe how
visible artefacts due to larger capacity are reduced by metameric-objective training. The same payload sentence is used, truncated by the
capability of each setting.
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Figure 1: More examples of stego images with their image metrics and payload accuracy in correct/capacity format (Source:
MetFaces [Karras et al. 2020] and CLIC [Toderici et al. 2020]).

Table 1: Results of autoencoders evaluation. Remarkable high performance are highlighted in green and low in red.

Downsample Encoding  Decoding

Series Version Factor Channels Time (ms) Time (ms) MSE PSNR  SSIM  LPIPS
SD 8 4 0.0025 0.0025 0.0019 31.0179 0.7737 0.2162

TAESD SDXL
[Boer Bohan 2023] 8 4 0.0020 0.0023 0.0017 32.6519 0.7898 0.2136
SD3 8 16 0.0019 0.0021 0.0008 35.3964 0.8895 0.1275
OptVQ 16x16x4 16 256 0.0065 0.0069 0.0021 29.5426 0.7963 0.1629
[Zhang et al. 2024] 16x16x8 16 256 0.0064 0.0069 0.0033 28.2396 0.8450 0.1414
SBER-MoVQ 67TM 8 4 0.0048 0.0097 0.0926 11.8707 0.2425 0.5016
[Maltseva et al. 2023] 270M 8 4 0.0046 0.0096 0.0847 12.2756 0.2453 0.5076
Taming [Esser et al. 2021] 716384 16 256 0.0051 0.0071 0.0053 26.3364 0.6189 0.2943
VQ F16 16 8 0.0051 0.0069 0.0041 27.5614 0.6876 0.2637
VQ F8 8 4 0.0044 0.0060 0.0030 29.0924 0.7306 0.1922
LDM VQ F4 4 3 0.0034 0.0034 0.0012 33.3598 0.8608 0.0906
[Rombach et al. 2022]  VQ F4 noat 4 3 0.0033 0.0033  0.0007 35.2590 0.8988 0.0680
KL F4 4 3 0.0218 0.0034 0.0007 35.9032 0.8982 0.0818

KL F32 32 64 0.0244 0.0076 0.0032 29.1994 0.7408 0.2190
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2 Autoencoders Assessment for Model’s Backbone

We conducted an assessment of state-of-the-art, popular, and open-sourced pretrained autoencoders to select the best backbone candidates.
The study spans from autoencoders family (vanilla AE, VAE, VQGAN, etc.) to their specific versions. These models are all independently
evaluated under the same framework. In concrete, a mixture of validation set from MetFaces [Karras et al. 2020] and CLIC [Toderici et al.
2020] datasets is used to assess the reconstruction quality of the autoencoders, along with their compression capabilities and speed.

The results of assessment are shown in Table 1. We notice that LDM-VQ-F4, KL-F4, and TAESD-SD3 stand out in image quality, although
KL-F4 has significant slower encoding time. So, among the two left, LDM-VQ-F4 (including noat version) are prioritised over TAESD-SD3
due to lower LPIPS But it is worth mentioning that TAESD-SD3 achieves similar level of quality with a much lighter model, a few MB.
Therefore, the latter is used for quicker preliminary experiments, while LDM-VQ-F4 is used for the larger ones due to greater potential.

Table 2: Tables of steganographic experiments. Pilot experiments (left) are trained with maximum 100 epochs, patience 10, and
learning rate of 8e-5. Hyper-parameter optimization (HPO) experiments (middle) increases patience to 30 and learning rate
to 1le-4. Full experiments (right) have uncapped epochs (usually 400-500), where resolution, payload capacity, and image loss
function, are shown respectively. First row of each table are reference baselines where following changes are applied respect to.

Pilot Experiments  Bits Acc. LPIPS Full Experiments Bits Acc. LPIPS
HPO Experiments  Bits Acc.  LPIPS
Pilot Baseline 05311  0.2554 100 128 MSE 0.9999  0.1924
Augmentation: On  0.6426  0.2302 HPO Result 0.9999  0.2675 100 128 Metameric ~ 0.9998  0.1409
Train Size: 2K 07338 03602 No Augmentation 100 256 MSE 1 0.1621
Backbone: TAESD3 ~ 0.8045  0.4040 - A];rSII\)/[éXBSaTI?bone 0.9999 02826 100 256 Metameric ~ 0.9998  0.1198
MSE weight: 0 05861  0.9380 "+ Mix Sum 09995  0.3868 200 128 MSE 0.9995  0.2251
Color Space: YUV 0.5081 0.1218 Batch Size 32 1 0.3026 200 128 Metameric ~ 0.9991 0.1470
Resolution: 256 05016  0.1211 Mix Sum 1 0.3019 200 256 MSE 1 0.2047
Hider: RoSteALS 0.5013  0.0456 200 256 Metameric ~ 0.9998  0.1288

3 Hyper-Parameter Optimization, Architecture Search, and Ablation Studies

After ensuring that image could be reconstructed appropriately, we conducted many preliminary studies, alternating settings, but they all
failed to learn payload embedding. It was only until curriculum learning when complete pipeline could be trained. The most relevant results
of these experiments are shown in Table 2. In the pilot studies, we explored many settings from a pilot baseline that uses 1K train images,
LDM-VQ-F4 as backbone, MSE loss weights 0.1, minimum resolution of 128 x 128, and payload capacity of 100. From this study, we find that
variety of examples speed up the learning process, whereas more complex patterns may lead to better results but are slow to converge.
After getting a better sense of search space, we conducted a hyper-parameter optimization (HPO) study, where the best settings were found.
It is characterized by the method described in the main paper like Conv Sum ("sandwiching conv layers") merger architecture and batch size
8, adding on the positive conditions in pilot study. Finally, full experiments on resolutions and capacity of choice were conducted, showing an
expected trend of increase in quality performance when larger resolution or reduced payload capacity. Noticeably, the metameric objective
always outperforms the MSE objective, with similar payload accuracy, showing the effectiveness of foveated training in steganography.
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