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Abstract

Steganography �nds its use in visual medium such as providing

metadata and watermarking. With support of e�cient latent repre-

sentations and foveated rendering, we trained models that improve

existing capacity limits from 100 to 500 bits, while achieving better

accuracy of up to 1 failure bit out of 2000, at 200K test bits. Fi-

nally, we achieve a comparable visual quality of 31.47 dB PSNR and

0.13 LPIPS, showing the e�ectiveness of novel perceptual design in

creating multi-modal latent representations in steganography.

CCS Concepts

• Computing methodologies→ Image representations; Per-

ception; Learning latent representations; Image processing; Recon-

struction; • Computer systems organization → Redundancy; •

Information systems→Multimedia content creation.
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1 Introduction

Steganography concerns about hiding data in another medium

[Wang et al. 2023]. More speci�cally, our work studies embedding

information in images. Steganography is therefore useful in con-

veying multi-modal information such as labels, scene descriptions,

or copyright marks. Growing number of AI-generated content and

introduction of AR/VR systems increases its importance further by

broadening the application scope [Rezaei et al. 2024].

Our work leverages latent representations [Yılmaz et al. 2024]

and a foveated rendering loss [Walton et al. 2022] to increase pay-

load capacity in steganography. With only 2000 training images,

we achieve bit accuracy of 99.99% for 40K test set bits. Concerning

state of the art in latent methods [Bui et al. 2023], our approach in-

creases the payload capacity from 100 bits up to 500 bits with up to

100% recovery under non-distortion condition, 27.56 db PSNR and

0.26 LPIPS. Our �nal contribution is the introduction of Metameric

Foveated Rendering loss in steganography, which noticeably im-

proves all visual metrics and quality with respect to classic L2 loss.
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Figure 1: Visual example of stego and payload recovery using

our proposed foveated steganography and RoSteALS (Source:

MetFaces [Karras et al. 2020]).

2 Method

Considering a message payload % ∈ {0, 1}: consisting of : bits and

a input image (cover) � ∈ R
ℎ×F×2 , �nd two functions � and ', to

produce an output image (stego),� (� , %) = � ′ ∈ R
ℎ×F×2 , and output

payload, '(� ′) = % ′ ∈ {0, 1}: . The aim is to reduce the distortion

between � and � ′ while maximizing the accuracy between % and % ′.

Figure 2: Our proposed foveated steganography approach

(Source: MetFaces [Karras et al. 2020]).
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Table 1: Table of results. Baseline is trained on MSE. RoSteALS uses MSE & LPIPS. Metameric solely relies on Metameric Loss.

Experiment Resolution Capacity Bit Accuracy MSE PSNR SSIM LPIPS Metameric Loss

Benchmark Baseline (RoSteALS) 256 100 0.9942 0.0009 32.16 0.8971 0.0780 0.0016

Vanilla Baseline 256 100 1 0.0015 28.90 0.8833 0.1621 0.0072

Vanilla Baseline 256 200 1 0.0018 28.37 0.8681 0.2047 0.0072

Metameric Baseline 256 200 0.9998 0.0010 31.47 0.8871 0.1288 0.0017

Vanilla Baseline 256 500 0.9997 0.0021 27.56 0.8348 0.2613 0.0077

— — — — — — — — —

Vanilla Baseline 128 500 0.4997 0.0007 33.11 0.9061 0.0570 0.0023

Our framework approaches this problem as depicted in Figure 2.

In the hiding stage, a frozen image encoder, �, transforms input

image into a latent representation, � (� ) = /8 . Payload embed-

der, � , creates also a learned representation, % (� ) = /? . Together,

they are manipulated by the merger, " , producing a merged la-

tent, " (/8 , /? ) = /< , which a frozen image generator, � , uses

to reconstruct the output image, � (/<) = � ′. Finally, a payload

retriever, ', extracts the output payload, '(� ′) = % ′. The loss func-

tion is de�ned as the combination of payload and image quality

losses, being BCE and Metameric Foveated Rendering [Walton et al.

2022] (defaulted to center) losses respectively. Formally, LC>C0; =

L?0~;>03 + _8 · L8<064 = BCE(%, % ′) + _8 · (MetamericLoss(� , � ′)),

where _8 controls the trade-o� between the two losses.

The dataset is a balanced mixture of 2000 training, 400 valida-

tion, and 400 test images from MetFaces [Karras et al. 2020] and

CLIC datasets [Toderici et al. 2020]. For preprocessing, images are

randomly cropped and padded to the size of input and normal-

ized as autoencoder requires. Notably, this dataset is much smaller

than typical datasets used for the same purpose, but is found su�-

cient to learn performing 100-bits steganography, within controlled

computing resources, about two hours on a single RTX 4090 GPU.

3 Results and Discussion

The frozen pair of image encoder and image generator to create a

high-quality latent representation, is the F4-with-attention version

autoencoder from LDM VQGAN series [Rombach et al. 2022]. After

evaluating empirically, we found its high reconstruction quality is

suitable for the embedding process. Compared to other backbones,

this one converges slower at payload embedding, but achieves

better image quality in the end. Keeping payload embedder as a

fully connected layers is su�cient to encode the information after

experimentation. For merger, the best performing architecture is

adding two convolutional layer sandwiching the sum of image and

payload latent, to soften the transition. Finally, ResNet50 was used

as payload retriever as a popular and well-studied architecture.

Apart from common metrics, we also report Metameric Loss,

which is a perceptual criterion akin to foveated gaze. Modeling the

human visual system, this loss is more forgiving of visual distortions

in the periphery and more harsh in the fovea.

The main results are shown in Table 1. Baselines achieved ex-

panding payload capacities, at various resolutions. At minimal

setting, baseline has a bit accuracy of 99.99%, failing to decode only

4 out of 40K test bits. Noticeably, we achieve 100% recovery in the

native resolution of benchmark, RoSteALS [Bui et al. 2023], while

other settings also all exceed 99.95% compared to benchmark failing

to reach 99.5%. Nevertheless, RoSteALS has better perceptual image

quality. This is reasonable since it is an augmented version of the

baseline which uses larger datasets, incorporates LPIPS in loss, and

applies �ner-grained optimization in the training.

Compared to baseline, Metameric Loss consistently improves the

quality of the reconstructed images while keeping same level of bit

accuracy. Compared to the benchmark, Figure 1 shows an example

of resulting stego and recovered payload. This shows e�ectiveness

of this visual technique in enhancing perceptual �delity of images.

Despite successfully unlocking higher message length, we notice

tangible limits of payload capacity, such as failing to learn 500-bit

payload at 128 resolution. Resolution bounds the upper payload

capacity under similar perceptual �delity of images, and we hope

to enhance this by introducing gaze as a new parameter. Future

directions include exploring robustness under various distortions,

subjective experiments to compare visual quality, and ablation stud-

ies with same capacity benchmarks. This work provides a light-

weighted, human-centered, latent-based steganography framework

which boosts payload capacity and accuracy while maintaining im-

age quality. By satiating the need of large capacity in transmitting

messages, we step towards practical applications of steganography

in real-world scenarios.
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