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Abstract: A new technique for multi-view autostereoscopic projection

display is proposed, and demonstrated. The technique uses two mobile

projectors, a rotating retro-reflective diffuser screen, and a head-tracking

camera. As two dynamic viewing slits are created at the viewer’s position,

the slits can track the position of the eyes by rotating the screen. The display

allows a viewer to move approximately 700 mm along the horizontal axis,

and 500 mm along the vertical axis with an average crosstalk below 5 %.

Two screen prototypes with different diffusers have been tried, and they

provide luminance levels of 60 Cd/m2, and 160 Cd/m2 within the viewing

field.

© 2013 Optical Society of America

OCIS codes: (120.2040) Displays; (230.1980) Diffusers; (330.1400) Vision - binocular and

stereopsis.
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1. Introduction

Autostereoscopic displays form at least two exit pupils, through which a three-dimensional

(3D) image is observed without glasses. The exit pupils can be either fixed, or can dynamically

follow viewer’s head position under the control of a head-tracker. A large viewing field for the

viewer in an autostereoscopic projection display can be achieved by creating tens of exit pupils

using the parallax barrier approach [1], or using an array of projectors [2, 3]. Alternatively,

one can design a display tracking the viewer’s eye using dynamic exit pupils [4–6]. The main

advantage of tracking displays is that full resolution is achieved in each view, but they are

typically limited to one or few viewers. Projection based autostereoscopic displays employ

various transfer screens to form an exit pupil, such as retro-reflective light diffusing screen [2,4],

double lenticular screen [3], or Fresnel lens in front of a light shaping diffuser [5, 7].

In this paper, we propose a novel autostereoscopic projection display technique which em-

ploys a transfer screen to form a pair of dynamic vertical viewing slits aligned with the viewer’s

eyes. Any of the aforementioned transfer screens can be used for the proposed technique. The

viewing slits track the viewer’s eyes in a large viewing field by rotating the transfer screen

in-plane. Advantages of the proposed technique are as follows: it requires only two projectors

rather than an array of projectors; there is no image registration problem on the screen due to

movement of projectors; the viewing slits always track the viewer, so the viewer never per-

ceives discrete transitions between different perspectives; the technique can provide high-gain,

and sufficient brightness even with a pair of mobile projectors. The main limitation of this tech-

nique is that it is suitable for only one viewer. Luminance, crosstalk, and dynamic viewing area

analysis, and measurement results as well as a video demonstration of the system are presented.

Fig. 1. System sketch showing the elements and the created viewing field of the display.

2. Concept of the display

The system sketch shown in Fig. 1 shows two pico projectors, a rotating transfer screen, an

head-tracker unit, and a control unit. The stereo content is projected onto the transfer screen

by two pico projectors which are placed horizontally apart from each other by average human

interpupillary distance (IPD), 63 mm. Each projector is assigned to one eye of the viewer. One

projector projects the content for the right eye perspective and the other projects the content
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for the left eye perspective. On the plane of projectors, as shown in Fig. 1, the transfer screen

creates two viewing slits, each of which is parallel to the major diffusing axis of the single axis

diffuser, and crosses over the position of corresponding pico projector’s micro electromechan-

ical system (MEMS) based scanner. Each viewing slit contains the image content projected by

the corresponding pico projector. The creation of viewing slits by by using a retro-reflective

diffuser screen, as transfer screen, has been explained in [8]. A viewer, who is standing in the

plane of pico projector and looks through the viewing slits, perceives stereo images.

(a)

(b) (c) (d)

Fig. 2. Viewing slits for different orientations of the transfer screen. (a) Relative angular

position of viewer’s eyes with respect to projectors (b) Rotation of transfer screen by 0o of

α and w < 2× IPD, thus h = w < 2× IPD (c) Rotation of transfer screen by small α , thus

w < h < 2× IPD (d) Rotation of transfer screen by large α , thus h > 2× IPD > w, and

there is crosstalk between viewing slits.

α = arctan(
Xe −Xp

Ye −Yp

) (1)

In order to change the position of viewing slits according to the position of viewer’s eyes,

a head-tracker unit tracks the position of the viewer, and sends the position information to

the control unit. Using the formula of Eq. (1), the control unit calculates the angular position

of the viewer, α , which is the angle between eye-projector line and y axis, as shown in Fig.

2(a). Using the angle, α , a servo motor rotates the transfer screen in-plane such that the major

diffusing axis of the diffuser makes the same angle with y axis as eye-projector line does, as in

Fig. 2. Thus, viewing slits dynamically track the viewer in a large viewing field, as depicted in

Fig. 1. The motion of the viewing slits is analogous to the in-plane rotation of a beam around an
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anchor point. The MEMS scanner of the pico projector is the anchor point of the corresponding

viewing slit.

By projecting different perspective images for the corresponding positions of the viewer, a

multi-view 3D display is realized. The proposed technique provides multi-view stereo vision to

a single viewer in a large viewing field, which is an arc of a circle with projectors at its center,

as depicted in Fig. 1.

3. Characterization of the display

Table 1. Definitions of Symbols

Parameter Symbol

Prototype Parameters

Projection Distance d

Projection Angle β
Screen size s

Diffusing angle in major axis (FWHM) φ
Diffusing angle in minor axis (FWHM) ψ
Distance between two projectors p

Diameter of projector’s MEMS scanner dp

Interpupillary Distance IPD

Viewing Slits Parameters

Distance between slits p

Actual width w

Horizontal width h

Rotation angle α
Length L

Maximum rotation angle θ
Depth ∆

The viewing field of the proposed autostereoscopic display technique is characterized by the

length, L, depth, ∆, and the maximum rotation angle, θ , of viewing slits, as depicted in Fig. 1.

For the proposed technique, the viewing field has been defined as the three-dimensional space

in which the crosstalk value of the display is low enough to perceive stereo images.

L = 2×d × tan(φ/2) (2)

The length, L, of viewing slits characterizes the luminance of the display across the projector

plane. It is determined by the projection distance, d, and diffusing angle, φ , of single axis dif-

fuser in major axis, as in Eq. (2). As the viewer moves away from the center of the viewing slit,

which is the position of the pico projector, the luminance of the display decreases, according

to the diffusing properties of the diffuser. If the diffusing angle, φ , is expressed as full-width-

at-half-maximum (FWHM) value, then the luminance of the display is less than 50% of the

maximum luminance beyond the length, L, of viewing slits.
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Fig. 3. Top view of the system showing depth of viewing slits.

s

w
=

d −∆ f ront

∆ f ront

=
d +∆back

∆back

(3)

∆ = ∆ f ront +∆back =
d

s
w
+1

+
d

s
w
−1

(4)

The depth, ∆, of the viewing slits characterizes the luminance of the display along the pro-

jection axis. As the viewer moves away from the projector plane along the projection axis, the

luminance decreases at the edges of the transfer screen. Figure 3 illustrates a top view of the

proposed system. In Fig. 3, the projection angle of the projector is shown as β , projectors to

screen distance is shown as d, the width of viewing slit is shown as w, and the depth of viewing

slits is shown as ∆. By using the triangle similarity expressed in Eq. (3), the depth, ∆, of view-

ing slits can be calculated as in Eq. (4). If the width, w is FWHM value, the luminance at the

edges of the transfer screen is less than 50% of the maximum luminance beyond the depth, ∆,

of viewing slits.

h =
w

cos(α)
(5)

h < 2× IPD (6)

α < θ = arccos(
w

2× IPD
) (7)

The maximum rotation angle, θ , of the viewing slits is the rotation angle, α , beyond which

the horizontal width of the viewing slits, h, is larger than 2× IPD, as in Fig. 2(d), and crosstalk

results in inseparable stereo images. The horizontal width of viewing slits, h, is the full-width-

at-zero-intensity (FWZI) width of viewing slits along the horizontal axis, x-axis. In order to

avoid crosstalk between stereo images, following two conditions must be satisfied in the pro-

posed system design; (1) the horizontal distance between viewing slits, p must be equal to

interpupillary distance of the viewer, IPD, and (2) the horizontal width of viewing slits, h, must

be smaller than 2× IPD, as in Figs. 2(b) and 2(c).

The transfer screen does one-to-one imaging to form exit pupils of pico projectors. Plac-

ing two projectors horizontally apart from each other by IPD makes the horizontal distance

between viewing slits, p, equal to the interpupillary distance of the viewer, IPD. Thus, the
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aforementioned first condition to avoid crosstalk is satisfied, as long as the viewer’s eyes are

aligned along the horizontal axis.

The horizontal width of viewing slits, h, increases with the increase in rotation angle, α , of

viewing slits, as seen in Figs. 2(b)-2(d). The relationship between the horizontal width, h, and

rotation angle, α , of viewing slits is stated in Eq. (5), where w is the actual width of viewing

slits. It is the FWZI width of the viewing slit, which is measured across the viewing slit at

right angles of its length. It is a fixed system parameter which is proportional to the projection

distance, d, the diffusing angle of single axis diffuser in minor axis, ψ , and the diameter of

MEMS scanner of projector, dp. By placing Eq. (5) into Eq. (6), the second condition to avoid

crosstalk, stated in Eq. (6), can be restated as in Eq. (7). Equation (7) implies that there is a

maximum rotation angle, α , of viewing slits, beyond which crosstalk results in inseparable

stereo images.

(a) (b)

Fig. 4. (a) The realised prototype. (b) The transfer screen consisting a retro-reflector and a

diffuser.

4. The prototype

A prototype was realised to demonstrate the capabilities of the proposed technique. The pro-

totype consists of two MEMS based laser pico projectors from Microvision, Inc. [10], a retro-

reflective diffuser screen as a transfer screen [8], an in-house made head-tracker unit [13], an

in-house made rotating mechanism which rotates the transfer screen around its center, and a

personal computer. Figure 4(a) shows a photograph of the realised prototype.

Table 2. Prototype Parameters

Parameter Symbol Value

Projection Distance d 1180 mm

Projection Angle β 9.68o

Screen size s 200 mm

Diffusing angle in major axis (FWHM) φ 40o

Diffusing angle in minor axis (FWHM) ψ 0.2o

Distance between two projectors p 63 mm

Diameter of projector MEMS scanner dp 1 mm

Diameter of eye pupil deye 2 mm−8 mm

Interpupillary Distance IPD 63 mm

The transfer screen is a layered composition of a retro-reflective sheet [9] from Reflexite [11],

and a single axis diffuser (large diffusing angle in major axis and small diffusing angle in the
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perpendicular minor axis). Two different types of single axis diffuser have been tested as the

diffuser layer of the transfer screen. Diffuser 1 is a randomly patterned aperiodic diffuser from

Luminit, LLC [12] with FWHM diffusing angle, φ , of 400 in major axis, and, ψ of 0.20 in

minor axis. Diffuser 2 is a conventional periodic diffuser with FWHM diffusing angle, φ , of

200 in major axis, and, ψ of ∼00 in minor axis. The retro-reflector sheet is a high fill factor

200 mm× 200 mm corner cube retro-reflector array with 0.254 mm pitch size. As the screen

size is equal to the retro-reflector sheet size, it can be enlarged using an improved mechanical

design to support a larger screen. All prototype parameters are presented in Table 2.

(a) (b)

Fig. 5. (a) Created viewing slits at different rotation angles: 9 shots are superimposed in

order to create the photograph. The two bright spots in the photograph are pico projectors.

(b) A sample picture of viewer, showing viewing slits on his eyes’ position (Media 1:

illustrates the head-tracker and screen rotation real-time. Media 2: illustrates right eye and

left eye views captured with a camera that moves with the viewer.).

It is enough to rotate only single axis diffuser in order to create dynamic viewing slits. How-

ever, in the prototype, rotating mechanism rotates both retro-reflector sheet and the single axis

diffuser which makes the realization of the prototype easier. The created viewing field is illus-

trated in Fig. 5(a) by taking pictures of viewer space for different rotation angles of viewing

slits. Figure 5(b) shows a sample picture of viewer while viewing slits appear on his eyes’

position.

Specular reflections create two bright lines across the transfer screen, which result in double

image along the bright lines. The specular reflections can be eliminated by anti-reflection (AR)

coating surfaces, or by tilting the transfer screen around the vertical axis, y-axis. In the proto-

type, display screen has been tilted by 5o around the vertical axis, so specular reflections are

not observed on the transfer screen. Fig. 6(a) is a picture of the screen taken from the left eye

viewing slit. Fig. 6(c) is a picture of the screen taken between left and right eye viewing slits,

thus both right and left eye images are observed.
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(a) (b) (c)

Fig. 6. Screen shots taken from different viewing positions: (a) left eye, (b) right eye, and

(c) between the two eyes. (Media 3) video shows L and R images as a camera is moved

laterally within the viewing field.

5. Results and discussions

As a quality measure, a crosstalk analysis of the realized prototype for both diffusers was con-

ducted. The crosstalk has been quantized by Eq. (8), where leakage is the maximum luminance

of light that leaks from unintended channel to the intended channel, and ’signal’ is maximum

luminance of the intended channel, [14].

crosstalk(%) =
leakage

signal
×100 (8)

Thus, two luminance measurements of the screen are taken from each eye’s position to calcu-

late the crosstalk value of the corresponding eye. In the conducted experiments, only crosstalk

values for the left eye has been measured, since the system is approximately symmetrical. For

the first luminance measurement, which determines the leakage, full black image is projected

by left-eye projector, and full white image is projected by right-eye projector. For the sec-

ond measurement, which determines the signal, images for the first measurement are swapped.

Luminance values have been measured by a calibrated camera from Radiant Imaging, which

takes photometrically weighted photographs, and inserted into Eq. (8). By repeating the ex-

plained procedure above for different positions of camera in viewer’s space, and interpolating

the measured values; crosstalk, and luminance maps of viewer’s space have been obtained for

both transfer screen with diffuser 1, and transfer screen with diffuser 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. (a) and (b) Interpolated crosstalk maps of viewer’s space at the projector plane for

diffusers I and II. (c) and (d) Horizontal cross-sections of viewing slits for different rotation

angle, a for diffusers I and II. (e) and (f) Interpolated luminance map of viewer’s space at the

projector plane for diffuser 1 and 2. (g) and (h) Crosstalk and luminance variations along

the projection axis for diffuser 1 and 2 at the position (x,y) = (0,9)cm and z is variable in

the measurements.
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Figure 7(a) is the obtained crosstalk map of the viewer’s space in projector plane for screen

with diffuser 1. According to [15], crosstalk should be less than 5 % in order to prevent reduced

viewing comfort in half of population. Thus the maximum rotation angle, θ , of viewing slits

is 46o, beyond which the crosstalk is more than 5 %, and results in inseparable stereo images.

Figure 7(c) illustrates the horizontal cross-section of viewing slits for different rotation angles.

The actual width, w, of viewing slits, which is the full width at 5 % of maximum intensity, for 0o

of rotation, is 75 mm. By placing the actual width, w, of viewing slit into Eq. (7), the maximum

rotation angle, θ , of viewing slits is calculated as 530, which validates the experimental result

of 46o.

Figure 7(e) is the luminance map of viewer’s space in projector plane. The luminance of the

display decreases to 50% of the maximum luminance at around 420 mm away from the center

of viewing slits, which are located at (0,0) in coordinate system. Thus, the FWHM length, L, of

viewing slits is 840 mm. By placing the prototype parameters, stated in Table 2, into Eq. (2), the

FWHM length, L, of viewing slits is calculated as 859 mm, which validates the experimental

result of 840 mm.

Figure 7(g) shows the crosstalk, and luminance variations in projection axis. The crosstalk

of the display is below 5 % for ±7.5 cm away from the projector plane. Thus, the viewer still

perceives stereo images away from the projector plane. However, as the viewer moves away

from the projector plane, perceived luminance varies over the transfer screen.

In order to increase the viewing field by increasing the maximum rotation angle, θ , of view-

ing slits, another transfer screen has been constructed by replacing diffuser 1, 40o
× 0.2o ape-

riodic single axis diffuser, with diffuser 2, 20o
×0o periodic diffuser. Crosstalk, and luminance

maps of the viewer’s space have been obtained for the screen with diffuser 2, and presented in

Figs. 7(b), 7(f), and 7(h). The crosstalk of the screen with diffuser 2 is less than the diffuser

1, for the same area of viewer’s space, as presented in Fig. 7(a). The maximum rotation angle,

θ , of viewing slits is 58o for the prototype 2, and it is more than the maximum rotation angle,

θ , of viewing slits for the diffuser 1, which is 46o. Figure 7(d) illustrates the horizontal cross-

section of viewing slits for different rotation angles. As seen in Fig. 7(d), the actual width, w, of

viewing slits, which is the full width at 5 % of maximum intensity for 0o of rotation, is around

60 mm. By placing the actual width, w, of viewing slit into Eq. 7, the maximum rotation angle,

θ , of viewing slits is calculated as 61o, which validates the experimental result of 58o.

Figure 7(f) is the luminance map of viewer’s space in projector plane for the the screen with

diffuser 2. As seen in Fig. 7(f), the luminance of the display decreases to 50% of the maximum

luminance at around 210 mm away from the center of viewing slits. Thus, the FWHM length,

L, of viewing slits is 420 mm. By placing the prototype 2 parameters, which are the projection

distance, d, of 1180 mm, and the FWHM diffusing angle, φ , of 20o into Eq. (2), the FWHM

length, L, of viewing slits is calculated as 416 mm, which validates the experimental result of

420 mm.

Figure 7(h) shows the crosstalk, and luminance variations in projection axis for the screen

with diffuser 2. The crosstalk for the diffuser 2 is less than the crosstalk for diffuser 1, for

±7.5 cm away from the projector plane, as presented in Fig. 7(g)

As the periodic diffuser is used instead of aperiodic diffuser, the crosstalk of the display

in viewer’s space has decreased significantly. However, the mismatch between the periodicity

of retro-reflector sheet, and the periodicity of single axis diffuser created Moiré patterns on

transfer screen, as seen in Fig. 8(a). Thus, the single axis diffuser must be aperiodic in order to

have a Moiré-free transfer screen, as seen in Fig. 8(b). Although the periodic diffuser creates

Moiré patterns, subjects have stated that the display presents successful stereoscopic vision for

both types of the single axis light diffuser.
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(a) (b)

Fig. 8. Images captured from a screen with (a) periodic and (b) aperiodic diffuser, respec-

tively. Moire artefacts are visible in the periodic screen.

In projection-based displays, screen size, s, is determined by the projection distance, d, and

the projection angle, β , as in Eq. 9. For the displays which project images on Lambertian

scattering surfaces, the screen size, s, is limited by the projector’s power, since as the projection

distance, d, increases, the luminance of the display decreases dramatically.

s = 2×d × tan(β/2) (9)

As the screen in prototype is a high gain retro-reflective diffusing surface, all generated

power is concentrated into the viewing slits, and luminance is always reasonably high in the

viewing slits regardless of projection distance. Retro-reflective surfaces can have gains of be-

tween 1k − 10k [16]. Thus, projection distance, d, and screen size, s, is not limited by the

projector power. However, it should also be noted that, as the retro-reflector screens work under

a specific acceptance angle limit, projection angle, β can not exceed the acceptance angle limit.

In the prototype, projection angle, β , is 9,68o, which is smaller than the acceptance angle, 30o,

of retro-reflector.

6. Conclusion

A new type of multi-view autostereoscopic projection display, using a pair of MEMS scanner

based pico projectors, a head-tracking camera, and a rotating retro-reflective diffuser screen is

proposed and demonstrated. Analytical and experimental results for crosstalk and luminance

are in good agreement. The screen with diffuser 1 achieved a viewing field of 500 mm in hori-

zontal axis, and 450 mm in vertical axis. The screen with diffuser 2 achieved a viewing field of

700 mm in horizontal axis, and 500 mm in vertical axis. The crosstalk of the display is below

5 % for both diffusers. The maximum luminance of the display is 50 cd/m2 and 160 cd/m2 for

diffuser 1 and diffuser 2, respectively. The crosstalk remained below 5 % within ±7.5 cm in the

z-axis, i.e., user can move back and forth about 15 cm and the crosstalk remain at acceptable

levels while the luminance dropped by 25 % and 10 % for Screen 1 and Screen 2. Beyond that

range, the luminance at the edges of the transfer screen decreases and corners of the images are

vignetted.

The technique introduced in this paper provides a large-screen autostreoscopic projection

display using a pair of low-lumen projectors for a single viewer. Full resolution of the display

is maintained. Retro-reflective screen provides high brightness gain. The transition between

different perspectives is smooth as viewing slits track the eyes real-time. Some of main appli-

cations are personal entertainment displays used in cars, planes, and simulators.
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