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Figure 1: (a) Our lensless camera placed in front of the display captures the light field emitted from the display pixels. (b) A
conventional camera captures a real-world photograph of the test pattern on the display. (c) Our learned model estimates a
rendered view from the viewpoint of the real-world photograph displayed in the middle column. The right columns in (b) and
(c) present the display’s angular intensity distributions in spherical coordinates. The radius denotes the combined angular
deviation from the optical axis, computed from the horizontal and vertical incidence angles. These plots illustrate how the
relative intensity changes with viewing angle.

Abstract
Calibrating displays is a basic and regular task that content creators
must perform to maintain optimal visual experience, yet it remains
a troublesome issue. Measuring display characteristics from differ-
ent viewpoints often requires bulky equipment and a dark room,
making it inaccessible to most users. To avoid such hardware re-
quirements in display calibrations, our work co-designs a lensless
camera and an Implicit Neural Representation based algorithm for
capturing display characteristics from various viewpoints. More
specifically, our pipeline enables efficient reconstruction of light
fields emitted from a display from a viewing cone of 46.6◦ × 37.6◦.
Our emerging pipeline paves the initial steps towards effortless
display calibration and characterization.

CCS Concepts
• Hardware→ Emerging simulation; Hardware validation; •
Computing methodologies→ Computational photography.
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1 Introduction
Professional content creators use off-the-shelf colorimeters 1 regu-
larly to maintain a color consistency in the workflow. Similarly, dis-
play engineers conduct calibrations by measuring various aspects
of screens including but not limited to luminance, chromaticity, and
contrast ratios 2. This process requires specialized equipment such
as spectroradiometers or goniophotometers 3.

Display chromaticity and luminance vary with viewing angle,
affecting how users perceive content from different positions in
front of a screen. But most calibration tools assume a fixed viewing
position leading to invalid assessments for other viewing positions.
This is not only problematic for display manufacturers but also for

1https://www.adobe.com/creativecloud/video/discover/how-to-calibrate-
monitor.html
2https://www.admesy.kr/articles/display-calibration-workflows-rd-to-mass-
production/
3https://www.lisungroup.com/news/technology-news/application-of-
goniophotometers-in-display-and-projection-technologies.html
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professionals that need consistent color edits for various geometric
configurations. The ISO standards [ISO 2008] define procedures for
assessing the uniformity distribution of Flat Panel Display (FPD) at
various viewing directions by rotating either the display or mea-
surement instrument in a dark room. However, these requirements
with numerous captures hinder the end users from performing
regular calibration, which is critical for virtual production display
walls 4, professional graphic design, and video editing 5. An ac-
cessible method with a reasonable amount of captures is needed to
measure the image quality of the displays from arbitrary viewpoints.

Our work introduces a calibration tool that characterizes the
display pixel emission patterns at different viewing angles with
simpler setup and fewer captures. Specifically, we design a paired
hardware and software: (1) a lensless camera [Chen et al. 2024;
Kingshott et al. 2022] capturing the incoming light of a display pixel
from a range of directions and (2) an Implicit Neural Representation
(INR) that encodes the display angular responses. Our work makes
the following contributions:

• Lensless Camera Prototype. We design a lensless camera using
a phasemask and aperture array to capture display characteristics
across a practical angular range. The phase mask is positioned
30𝑚𝑚 from the display pixel, with the imaging sensor placed
10𝑚𝑚 behind it to ensure spatial invariance of the diffuser. This
configuration enables horizontal and vertical incident angle cov-
erage of approximately 46.6 and 37.6 degrees, respectively.
• INR for Display Pixel Characterization. To efficiently repre-
sent the light fields from the lensless captures and generate novel
views of unseen display pixels, we train an Multi-Layer Percep-
tron (MLP) that performs end-to-end reconstruction based on
different display positions and incident angles. This MLP model
can be trained with only nine positions on the display, enabling
the reconstruction of the light field for each pixel on the display.

We conduct experiments on a Liquid Crystal Display (LCD) and
demonstrate that our method can reconstruct the display with
different viewpoints. Our codebase is available at GitHub:complight.

2 Methods
Our method reconstructs the light field representation of a display
from lensless captures of individual pixels. We detail our pipeline
consisting of hardware and software components in the subsequent
sections. Our notations are summarized in Tbl. 1. Upper-case bold
letters denote matrices, while lower-case bold letters represent
vectors. Scalars and spatial indices are denoted by non-boldface
letters. The calligraphic letters indicate the functions.

2.1 Lensless 2D Image Formation
Capturing the incoming light from pixels across multiple directions
is crucial in our application. We choose the lensless cameras for
their ease of modification and flexibility.

4https://partnerhelp.netflixstudios.com/hc/en-us/articles/1500002086641-Common-
Virtual-Production-Challenges-Potential-Solutions
5https://displaycal.net/

H Coefficient matrix for lensless forward model
Y Lensless camera 2D measurements
X Lensless camera unknown scene intensity
y Flattened lensless camera measurements
x Flattened unknown scene intensity
ℎ𝐼 ,𝑤𝐼 Height and width of the lensless image
ℎ𝑆 ,𝑤𝑆 Height and width of the scene
C(·) Cropping function
Z(·) Zero padding function
h Pre-captured PSF
𝑥,𝑦 Display pixel coordinates
𝑢, 𝑣 Light field angular coordinates
𝑠, 𝑡 Image coordinates
L Light field
Ipred Predicted lensless capture
Igt Ground truth lensless capture
F𝜃 Multi-layer perceptron
𝛾 (·) Positional encoding
𝑛 Aperture size
𝑚 Distance between display pixel and aperture
𝛼 Incident angle of the light rays
Table 1: Notation used throughout this section.

Figure 2: The display pixel captured with a microscope (left).
The Point Spread Function (PSF) captured with the proposed
lensless camera (middle). The captured lensless image from
the display pixel (right).

Our lensless camera contains a diffuser that alters the light prop-
agation paths, resulting in distorted images on the sensor as shown
in Fig. 2. Let ℎ𝐼 and 𝑤𝐼 denote the height and width of the sen-
sor, and ℎ𝑆 and𝑤𝑆 denote the height and width of the scene. The
forward imaging process can be expressed as

y𝐼 = Hx𝑆 , (1)

where y𝐼 ∈ R(ℎ𝐼 ·𝑤𝐼 ) denotes the flattened measurement vector
from the sensor,H ∈ R(ℎ𝐼 ·𝑤𝐼 )×(ℎ𝑆 ·𝑤𝑆 ) is a coefficient matrix model-
ing the input light’s interaction with the diffuser, and x𝑆 ∈ R(ℎ𝑆 ·𝑤𝑆 )

represents the flattened intensity vector of the unknown scene.
However, reconstructing the full H matrix is computationally in-
tractable. To address this, we position the diffuser close to the sensor
to ensure spatial invariance in the forward model, allowing it to be
approximated as a linear convolution:

Y = C
(
Z(X) ∗ Z(h)

)
= C

(
F −1

(
F
(
Z(X)

)
· F

(
Z(h)

) ) )
,

(2)

https://github.com/complight/learned_display_radiance_fields_with_lensless_cameras
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where Y ∈ Rℎ𝐼 ×𝑤𝐼 denotes the 2D measurements, X ∈ Rℎ𝑆×𝑤𝑆

denotes the unknown scene intensity, ∗ denotes the 2D linear convo-
lution operation, C(·) is the cropping operation, · is the Hadamard
product,Z(·) is the zero padding operation to ensures dimension
consistency and avoids circular convolution artefact, F and F −1
denote the Discrete Fourier Transform (DFT) and Inverse Discrete
Fourier Transform (IDFT), respectively, and h ∈ Rℎ𝑆×𝑤𝑆 is the pre-
captured PSF. To reconstruct for the unknown scene X, we need to
solve an inverse problem of the Eq. (2) by minimizing the loss:

X̂← argmin
X

L
(
Ygt, C(Z(X) ∗ Z(h))

)
, (3)

where Ygt is the ground truth lensless image.

2.2 Lensless Light Field Formation
We leverage the lensless camera system to capture the unknown
light fields for pixels at different locations on the display L =

(𝑢, 𝑣, 𝑠, 𝑡), where the (𝑢, 𝑣) and (𝑠, 𝑡) are the angular and spatial
coordinates. An image formed by the directional light rays from a
single or multiple light sources satisfies:

I (𝑠, 𝑡) =
∫
Ω𝑥

∫
Ω𝑦

L (𝑢, 𝑣, 𝑠, 𝑡) 𝑑𝑢 𝑑𝑣, (4)

where {Ω𝑥 ,Ω𝑦} is a subset of all the angles which the light rays
reach for the imaging sensor. To simplify the problem, we model the
phase mask as an array of pinholes that scatter incident light rays
arriving at angles (𝑢′, 𝑣 ′) onto the imaging sensor, forming distinct
patterns that we refer as sub-aperture images. The formation of each
sub-aperture image can be modeled as the 2D convolution of the
scene information with its corresponding PSF patch, 𝔥(𝑢′, 𝑣 ′). To
compute this convolution efficiently across all angular dimensions,
we employ a 4D DFT on the spatial coordinates:

Igt = C
(
F −1

(
F
(
Z(L)

)
· F

(
Z(𝔥)

) ) )
. (5)

Finally, we pose the recovery of the light field as an inverse problem:

L̂← argmin
L
L
(
Igt, C

(
Z(L) ∗ Z(𝔥)

) )
, (6)

where Igt denotes the ground truth lensless capture.

2.3 Implicit Neural Representation
We utilize an MLP to efficiently represent the continuous pixel light
field samples from the lensless captures to avoid extensive sampling
on the target screen, which satisfies:

L̂(x, y, 𝑢, 𝑣, 𝑠, 𝑡) = F𝜃 (x, y, 𝑢, 𝑣, 𝑠, 𝑡), (7)

where F𝜃 is an MLP with parameters 𝜃 . This network takes the spa-
tial and angular coordinates as input and outputs the corresponding
pixel color value. The variables x and y denote the illuminated pixel
coordinates on the display. Before the input coordinates 𝑝 are fed
into the MLP, we apply positional encoding [Mildenhall et al. 2021]
to preserve high-frequency details:

𝛾 (𝑝) =
(
sin

(
20𝜋𝑝

)
, cos

(
20𝜋𝑝

)
, · · · , sin

(
2𝐿−1𝜋𝑝

)
, cos

(
2𝐿−1𝜋𝑝

) )
,

(8)
We apply the positional encoding with different frequency levels in
the input coordinate groups: e =

(
𝛾0 (x, y), 𝛾1 (𝑢, 𝑣), 𝛾1 (𝑠, 𝑡)

)
. Finally,

Figure 3: Each MLP layer consists of 32 neurons and a si-
nusoidal activation function. We apply positional encoding
with varying frequency levels (𝐿𝑓 ) to each input coordinate
group. After concatenating these encoded features, themodel
processes them to reconstruct the light field. We then per-
form linear convolution between this reconstruction and the
pre-captured PSF to generate the predicted lensless image
(Ipred). Finally, we compute the loss with Ipred and Igt.

the minimization problem in Eq. (6) is reformulated as:

𝜃 ← argmin
𝜃

L
(
Igt, C

(
Z(F𝜃 (e)) ∗ Z(𝔥)

) )
, (9)

where 𝜃 denotes the optimized parameters of the MLP.

Loss function. We employ the 𝐿1 norm to quantify the discrep-
ancy between Ipred and Igt, and use R to penalize predicted pixel
values exceeding the range [0, 1]. We define:

R(Ipred) =
∑︁

max(Ipred − 1, 0) +
∑︁

max(−Ipred, 0) . (10)

The total training loss is then:

L = 𝜆0∥Igt − Ipred∥1 + 𝜆1R(Ipred), (11)

where 𝜆0, and 𝜆1 represent weights (𝜆0 = 1, 𝜆1 = 10−7).

3 Evaluation and Discussion
Hardware. Our hardware uses a 0.5◦ engineered diffuser (Ed-

mund 35-860) with five 2.5𝑚𝑚 × 3𝑚𝑚 apertures positioned 10𝑚𝑚

from the imaging sensor as depicted in Fig. 4. We experimentally
determine this spacing to ensure spatial invariance and sharp caus-
tic patterns, satisfying Eq. (2). Moreover, we place the apertures
such that we maximize the angle of rays arriving from a pixel land-
ing on an imaging sensor. This aperture placement maximizes ray
angles from pixels to the sensor, though sensor dimensions limit
the maximum supported angle. In our implementation, the limited
imaging sensor dimensions dictate the locations of these apertures,
posing a constrain on the maximum angle we can support with
our aperture arrangement. We 3D print a housing maintains 30𝑚𝑚

between diffuser and screen, as demonstrated in left image Fig. 5.
We capture a stack of PSF for each aperture using a white LED with
a 100 𝜇𝑚 pinhole (Thorlabs P100HKb), then mount the prototype
in front of the display and activate pixels sequentially. To account
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Figure 4: The incident angle (𝛼) of the light rays is determined
by the distance between the aperture and the display pixel
(𝑚), as well as the size of the aperture (𝑛) (left). Our proposed
aperture array expands the incident angle range by turning
on each pixel one by one (right).

Figure 5: The top view of our lensless camera (left). The sim-
ulated display pixels with unseen incident angles and the
corresponding overlay intensity heatmap (right).

for LCD backlight bleeding 6, we sample nine screen positions to
capture the full spatial distribution (Supplementary Sec. 1).

Implicit Neural Representation. We divide lensless captures into
9 × 9 sub-aperture images using a 54 × 70 pixel sliding window.
Later, we feed them into a MLP that consists of 3 fully connected
layers with sinusoidal activation functions and 32 channels each. To
improve generalization, we inject random noise into the coordinates
from Sec. 2.3: display (std: 5 × 10−3), angular (std: 1 × 10−2), and
subview (std: 1× 10−3). We then apply positional encoding Eq. (2.3)
with 1, 5, and 10 frequency levels for display, angular, and spatial
coordinates, respectively (see Fig. 3 and Supplementary Sec. 2). We
optimize using Adam optimizer with an initial learning rate of 0.001
that decays linearly over 800 epochs and clip gradient norms to
1.0. We train the model on independent color channels to mitigate
crosstalk, which takes approximately one hour on an NVIDIA RTX
2070 GPU, while inference takes 0.01 seconds per 1080p frame.

Quantitative Evaluations. To assess pixel consistency, we mea-
sure intensity variations in reconstructed light fields across con-
tinuous horizontal and vertical incident angles. We sample nine
display positions with five measurements at different apertures per
position, train the MLP on this data, and estimate pixel values at
unseen angles. Fig. 5 shows smooth predicted intensity changes,

6https://pixiogaming.com/blogs/latest/understanding-backlight-bleed-in-ips-panels-
causes-and-solutions

Figure 6: The illustration of the camera poses and the display
(left). The average intensity that normalized to [0, 1] from
the ISO standard and ours, with data samples color-coded by
the corresponding camera poses (right).

demonstrating the model’s angle-dependent reconstruction capabil-
ity. Our architecture outperforms a vanilla MLP baseline with fully
connected ReLU layers across all metrics (Tbl. 2). To benchmark
our method, we follow the ISO standard [ISO 2008]: align a camera
with the display in a dark room, display full-screen white stimuli,
and capture images from −10◦ to 16◦ vertical incident angles. Fig. 6
shows our method reproduces the ISO intensity trend, validating its
physical plausibility. We capture light field data from nine display
positions without camera rotation or controlled lighting, reduc-
ing measurement time and simplifying view-dependent calibration
while maintaining comparable accuracy.

Table 2: Model Comparison

Methods PSNR
(dB) ↑ SSIM ↑ MSSIM ↑ Train

(h)
Inference

(s)
Ours 19.54 0.9165 0.9549 1 0.01
Vanilla 9.93 0.5327 0.8049 0.8 0.003

Limitations and Future Works. Our 46.6◦ angular coverage re-
mains well below the 240◦ required in professional display calibra-
tion. We could extend this range by co-optimizing the apertures
and the diffuser design. Beyond angular coverage, pixel-wise train-
ing hinders scalability for full-panel characterization. To overcome
these constraints, we outline several promising research directions.
First, developing an end-to-end pipeline that eliminates PSF convo-
lutions, cropping, and padding. Second, hash encoding [Müller et al.
2022] or Gaussian splatting could model light fields more efficiently.
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