

SpecTrack: Learned Multi-Rotation Tracking via Speckle Imaging

laser

https://complightlab.com

Ziyang Chen¹, Mustafa Doğa Doğan², Josef Spjut³, Kaan Akşit¹

University College London, Adobe Research, NVIDIA

Problem

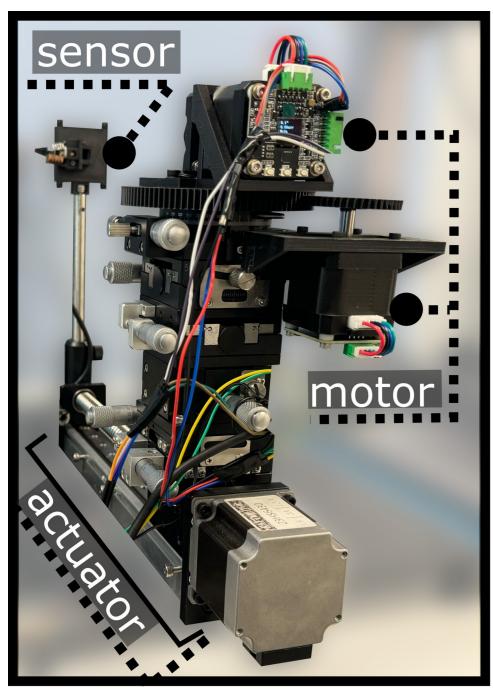
Current laser speckle imaging based tracking techniques are unable to reliably detect absolute **multi-axis** of objects with **minimum hardware complexity** in a **dynamic setting**.

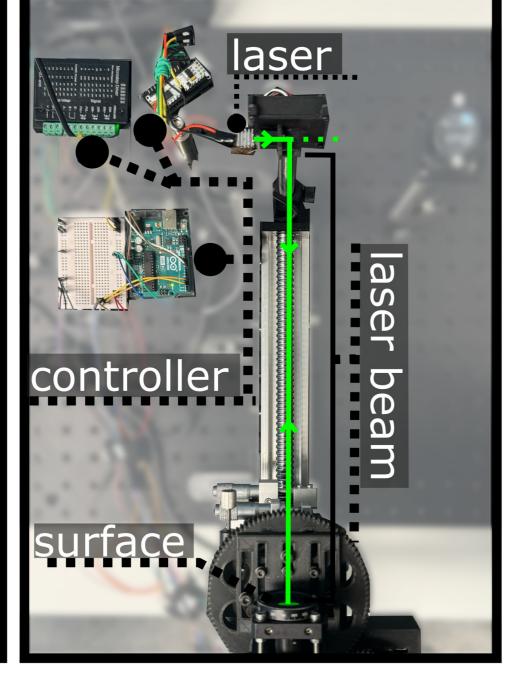
Aim

Accurately capture absolute multi-axis rotations with a single lensless camera utilizing laser speckle imaging.

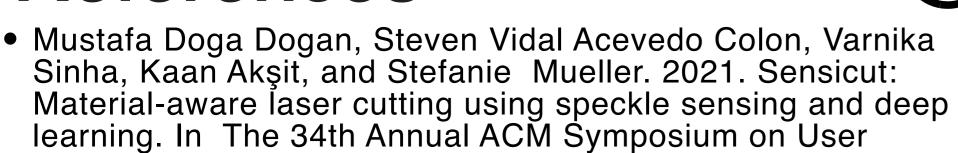
Related works

Method	Type	Rot. DOF	Sensors	Acc. (°)
This work	Absolute	3	1	0.3*
Gibson et al.	Absolute	2	1	0.6*
Heikkinen et al.	Relative	2	2	-


Others:


- ×Multiple sensors.
- ×3 degrees of freedom.
- ×Absolute rotations.
- XDynamic settings.

Testbed



Dataset collection & validation.

References

Interface Software and Technology. 24–38.
Sam J Gibson, Thomas OH Charrett, and Ralph P Tatam. 2024. Towards High Resolution Absolute Angle Sensing using Dual-Wavelength Laser Speckle. In 2024 IEEE International Instrumentation and Measurement Technology Conference I2MTC). IEEE, 1–6.

Juuso Heikkinen and Gary S Schajer. 2024. Self-calibrated defocused speckle imaging for remote surface motion measurements. Optics and Lasers in Engineering 173 (2024), 107914.

Jan Zizka, Alex Olwal, and Ramesh Raskar. 2011.
 SpeckleSense: fast, precise, low-cost and compact motion sensing using laser speckle. In Proceedings of the 24th annual ACM symposium on User interface software and technology. 489–498.

Proposed Method: SpecTrack

surface

 Speckle patterns are random dot patterns formed when laser light reflects off rough surfaces and captured by an imaging sensor.

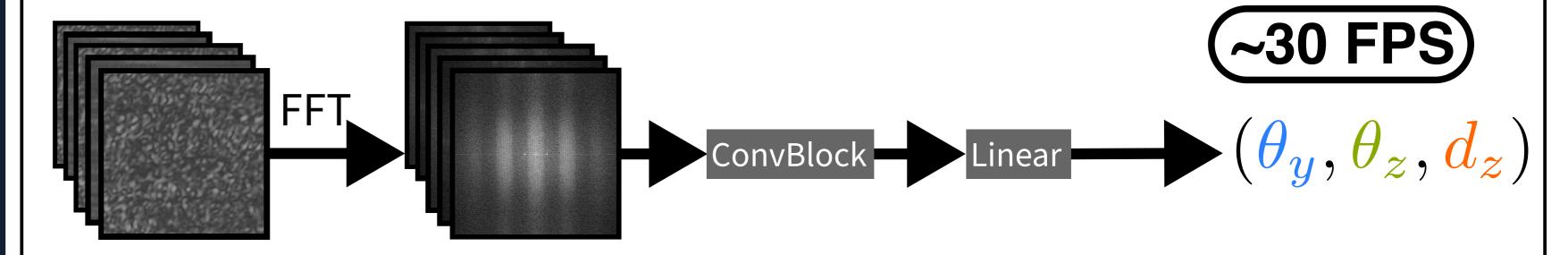
 Different poses result in varying speckle patterns, particularly when using a laser with multiple wavelengths (multiple peaks in the spectrum).

 Rotating the surface along the y-axis results in overlapping speckle images.

Using the Fast Fourier
 Transform to get the magnitudes of speckle image from various poses (y-axis roation, z-axis rotations, and z-axis displacements) or coded surface reveals interpretable patterns:

Speckle image $heta_{\mathcal{V}}=0^\circ$ $heta_{\mathcal{V}}=10^\circ$

This is the demonstration of overlapping speckle images if the laser light has exactly two wavelengths.


(0°,0°,27cm) (20°,0°,27cm) (40°,0°,27cm)

(0°,0°,13cm) (0°,14°,27cm)

(0°,0°,13cm) (0°,90°,27cm)

We chose this coded surface for its high signal-to-noise ratio and the straightforward interpretation of its magnitude image.

We trained a lighweight neural network on the collected dataset to retrieve poses, using the captured speckle images as inputs.


Conclusions

SpecTrack achieved:

- *Y-axis rotation* Mean Absolute Error (MAE) of *0.31*° with a standard deviation of *0.44*°.
- **Z-axis rotation** with an MAE of 0.52° (std = 0.36°).
- **Z-axis displacment** accuracy of **0.15 cm**.

Future work:

Test and refine the system in real-world settings with different lighting, distances, and object motions to enhance its use in VR, AR, and robotics applications.

